1,375 research outputs found

    Quantum and Thermal Fluctuations in Field Theory

    Full text link
    Blocking transformation is performed in quantum field theory at finite temperature. It is found that the manner temperature deforms the renormalized trajectories can be used to understand better the role played by the quantum fluctuations. In particular, it is conjectured that domain formation and mass parameter generation can be observed in theories without spontaneous symmetry breaking.Comment: 27pp+7 figures, MIT-CTP-214

    A Quantum Mechanical Model of Spherical Supermembranes

    Get PDF
    We present a quantum mechanical model of spherical supermembranes. Using superfields to represent the cartesian coordinates of the membrane, we are able to exactly determine its supersymmetric vacua. We find there are two classical vacua, one corresponding to an extended membrane and one corresponding to a point-like membrane. For the N=2{\mathcal N} = 2 case, instanton effects then lift these vacua to massive states. For the N=4{\mathcal N} = 4 case, there is no instanton tunneling, and the vacua remain massless. Similarities to spherical supermembranes as giant gravitons and in Matrix theory on pp-waves is discussed.Comment: 9 page

    Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions

    Full text link
    We study a 1-D array of Josephson coupled superconducting grains with kinetic inductance which dominates over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon model. We find that their classical relativistic motion leads to saturation branches in the I-V characteristic of the array. We then discuss the semi-classical quantization of the charge soliton, and show that it is consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of 100 microns, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the quantum behaviour of the charge soliton.Comment: 26 pages, LaTex, 7 Postscript figure

    The method of fundamental solutions for three-dimensional inverse geometric elasticity problems

    Get PDF
    We investigate the numerical reconstruction of smooth star-shaped voids (rigid inclusions and cavities) which are compactly contained in a three-dimensional isotropic linear elastic medium from a single set of Cauchy data (i.e. nondestructive boundary displacement and traction measurements) on the accessible outer boundary. This inverse geometric problem in three-dimensional elasticity is approximated using the method of fundamental solutions (MFS). The parameters describing the boundary of the unknown void, its centre, and the contraction and dilation factors employed for selecting the fictitious surfaces where the MFS sources are to be positioned, are taken as unknowns of the problem. In this way, the original inverse geometric problem is reduced to finding the minimum of a nonlinear least-squares functional that measures the difference between the given and computed data, penalized with respect to both the MFS constants and the derivative of the radial coordinates describing the position of the star-shaped void. The interior source points are anchored and move with the void during the iterative reconstruction procedure. The feasibility of this new method is illustrated in several numerical examples

    Local Moment Formation in the Periodic Anderson Model with Superconducting Correlations

    Full text link
    We study local moment formation in the presence of superconducting correlations among the f-electrons in the periodic Anderson model. Local moments form if the Coulomb interaction U>U_cr. We find that U_cr is considerably stronger in the presence of superconducting correlations than in the non-superconducting system. Our study is done for various values of the f-level energy and electronic density. The smallest critical U_cr values occur for the case where the number of f- electrons per site is equal to one. In the presence of d-wave superconducting correlations we find that local moment formation presents a quantum phase transition as function of pressure. This quantum phase transition separates a region where local moments and d-wave superconductivity coexist from another region characterized by a superconducting ground state with no local moments. We discuss the possible relevance of these results to experimental studies of the competition between magnetic order and superconductivity in CeCu_2Si_2.Comment: 4 pages. accepted for publication in Phys. Rev.

    D-Theory: Field Theory via Dimensional Reduction of Discrete Variables

    Get PDF
    A new non-perturbative approach to quantum field theory --- D-theory --- is proposed, in which continuous classical fields are replaced by discrete quantized variables which undergo dimensional reduction. The 2-d classical O(3) model emerges from the (2+1)-d quantum Heisenberg model formulated in terms of quantum spins. Dimensional reduction is demonstrated explicitly by simulating correlation lengths up to 350,000 lattice spacings using a loop cluster algorithm. In the framework of D-theory, gauge theories are formulated in terms of quantum links --- the gauge analogs of quantum spins. Quantum links are parallel transporter matrices whose elements are non-commuting operators. They can be expressed as bilinears of anticommuting fermion constituents. In quantum link models dimensional reduction to four dimensions occurs, due to the presence of a 5-d Coulomb phase, whose existence is confirmed by detailed simulations using standard lattice gauge theory. Using Shamir's variant of Kaplan's fermion proposal, in quantum link QCD quarks appear as edge states of a 5-d slab. This naturally protects their chiral symmetries without fine-tuning. The first efficient cluster algorithm for a gauge theory with a continuous gauge group is formulated for the U(1) quantum link model. Improved estimators for Wilson loops are constructed, and dimensional reduction to ordinary lattice QED is verified numerically.Comment: 15 pages, LaTeX, including 9 encapsulated postscript figures. Contribution to Lattice 97 by 5 authors, to appear in Nuclear Physics B (Proceeding Supplements). Requires psfig.tex and espcrc2.st

    Renormalization Group Approach to Field Theory at Finite Temperature

    Get PDF
    Scalar field theory at finite temperature is investigated via an improved renormalization group prescription which provides an effective resummation over all possible non-overlapping higher loop graphs. Explicit analyses for the lambda phi^4 theory are performed in d=4 Euclidean space for both low and high temperature limits. We generate a set of coupled equations for the mass parameter and the coupling constant from the renormalization group flow equation. Dimensional reduction and symmetry restoration are also explored with our improved approach.Comment: 29 pages, can include figures in the body of the text using epsf.st

    Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer.

    Get PDF
    Inhibiting protein kinases (PKs) that cause cancers has been an important topic in cancer therapy for years. So far, almost 8% of \u3e530 PKs have been targeted by FDA-approved medications, and around 150 protein kinase inhibitors (PKIs) have been tested in clinical trials. We present an approach based on natural language processing and machine learning to investigate the relations between PKs and cancers, predicting PKs whose inhibition would be efficacious to treat a certain cancer. Our approach represents PKs and cancers as semantically meaningful 100-dimensional vectors based on word and concept neighborhoods in PubMed abstracts. We use information about phase I-IV trials in ClinicalTrials.gov to construct a training set for random forest classification. Our results with historical data show that associations between PKs and specific cancers can be predicted years in advance with good accuracy. Our tool can be used to predict the relevance of inhibiting PKs for specific cancers and to support the design of well-focused clinical trials to discover novel PKIs for cancer therapy

    Transplanckian axions !?

    Full text link
    We discuss quantum gravitational effects in Einstein theory coupled to periodic axion scalars to analyze the viability of several proposals to achieve superplanckian axion periods (aka decay constants) and their possible application to large field inflation models. The effects we study correspond to the nucleation of euclidean gravitational instantons charged under the axion, and our results are essentially compatible with (but independent of) the Weak Gravity Conjecture, as follows: Single axion theories with superplanckian periods contain gravitational instantons inducing sizable higher harmonics in the axion potential, which spoil superplanckian inflaton field range. A similar result holds for multi-axion models with lattice alignment (like the Kim-Nilles-Peloso model). Finally, theories with NN axions can still achieve a moderately superplanckian periodicity (by a N\sqrt{N} factor) with no higher harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in this case due to the absence of some instantons, which are forbidden by a discrete ZN\mathbf{Z}_N gauge symmetry. Finally we discuss the realization of these instantons as euclidean D-branes in string compactifications.Comment: 46 pages, 6 figures. Added references, clarifications, and missing factor of 1/2 to instanton action. Conclusions unchange
    • …
    corecore